• Login
  • Register
  • Login Register
    Login
    Username/Email:
    Password:
    Or login with a social network below
  • Forum
  • Website
  • GitHub
  • Status
  • Translation
  • Features
  • Team
  • Rules
  • Help
  • Feeds
User Links
  • Login
  • Register
  • Login Register
    Login
    Username/Email:
    Password:
    Or login with a social network below

    Useful Links Forum Website GitHub Status Translation Features Team Rules Help Feeds
    Jellyfin Forum Support Troubleshooting Transcoding Issues on Windows Docker

     
    • 0 Vote(s) - 0 Average

    Transcoding Issues on Windows Docker

    Videos fail to load with "Playback failed due to a fatal player error."
    mistamoronic
    Offline

    Junior Member

    Posts: 16
    Threads: 2
    Joined: 2025 Jan
    Reputation: 0
    #4
    2025-01-13, 09:25 PM (This post was last modified: 2025-01-14, 05:27 AM by mistamoronic. Edited 1 time in total.)
    (2025-01-12, 08:20 AM)Efficient_Good_5784 Wrote: You're using WSL right? Make sure you're on WSL2 and have an Nvidia GPU (as it's the only brand of GPU that's supported on Docker with WSL2).

    This might be helpful: https://docs.docker.com/desktop/features/gpu/

    Following up with this, here is the output when I run the "docker run --rm -it --gpus=all nvcr.io/nvidia/k8s/cuda-sample:nbody nbody -gpu -benchmark" command from that page.

    Code:
    docker run --rm -it --gpus=all nvcr.io/nvidia/k8s/cuda-sample:nbody nbody -gpu -benchmark
    Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
            -fullscreen      (run n-body simulation in fullscreen mode)
            -fp64            (use double precision floating point values for simulation)
            -hostmem          (stores simulation data in host memory)
            -benchmark        (run benchmark to measure performance)
            -numbodies=<N>    (number of bodies (>= 1) to run in simulation)
            -device=<d>      (where d=0,1,2.... for the CUDA device to use)
            -numdevices=<i>  (where i=(number of CUDA devices > 0) to use for simulation)
            -compare          (compares simulation results running once on the default GPU and once on the CPU)
            -cpu              (run n-body simulation on the CPU)
            -tipsy=<file.bin> (load a tipsy model file for simulation)

    NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

    > Windowed mode
    > Simulation data stored in video memory
    > Single precision floating point simulation
    > 1 Devices used for simulation
    GPU Device 0: "Ampere" with compute capability 8.6

    > Compute 8.6 CUDA device: [NVIDIA GeForce RTX 3070]
    47104 bodies, total time for 10 iterations: 40.967 ms
    = 541.601 billion interactions per second
    = 10832.025 single-precision GFLOP/s at 20 flops per interaction


    However, when I try to do the "docker exec -it jellyfin nvidia-smi" command from this page https://jellyfin.org/docs/general/admini...ualization
    This is the result I get:
    Code:
    docker exec -it jellyfin nvidia-smi

    OCI runtime exec failed: exec failed: unable to start container process: exec: "nvidia-smi": executable file not found in $PATH: unknown

    Not sure why that is happening, because when I do the nvidia-smi test from this page: https://docs.nvidia.com/datacenter/cloud...kload.html just by itself, it works:

    Code:
    docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi
    Tue Jan 14 05:26:59 2025
    +-----------------------------------------------------------------------------------------+
    | NVIDIA-SMI 565.77.01              Driver Version: 566.36        CUDA Version: 12.7    |
    |-----------------------------------------+------------------------+----------------------+
    | GPU  Name                Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf          Pwr:Usage/Cap |          Memory-Usage | GPU-Util  Compute M. |
    |                                        |                        |              MIG M. |
    |=========================================+========================+======================|
    |  0  NVIDIA GeForce RTX 3070        On  |  00000000:09:00.0  On |                  N/A |
    | 30%  32C    P8            23W /  220W |    1626MiB /  8192MiB |      1%      Default |
    |                                        |                        |                  N/A |
    +-----------------------------------------+------------------------+----------------------+

    +-----------------------------------------------------------------------------------------+
    | Processes:                                                                              |
    |  GPU  GI  CI        PID  Type  Process name                              GPU Memory |
    |        ID  ID                                                              Usage      |
    |=========================================================================================|
    |    0  N/A  N/A        37      G  /Xwayland                                  N/A      |
    +-----------------------------------------------------------------------------------------+
    « Next Oldest | Next Newest »

    Users browsing this thread: 1 Guest(s)


    Messages In This Thread
    Transcoding Issues on Windows Docker - by mistamoronic - 2025-01-12, 08:05 AM
    RE: Transcoding Issues on Windows Docker - by Efficient_Good_5784 - 2025-01-12, 08:20 AM
    RE: Transcoding Issues on Windows Docker - by mistamoronic - 2025-01-12, 03:08 PM
    RE: Transcoding Issues on Windows Docker - by mistamoronic - 2025-01-13, 09:25 PM
    RE: Transcoding Issues on Windows Docker - by mistamoronic - 2025-01-14, 05:59 AM

    • View a Printable Version
    • Subscribe to this thread
    Forum Jump:

    Home · Team · Help · Contact
    © Designed by D&D - Powered by MyBB
    L


    Jellyfin

    The Free Software Media System

    Linear Mode
    Threaded Mode