2024-09-19, 03:34 AM
(This post was last modified: 2024-09-19, 03:36 AM by ginjaturtles.)
Here is my docker compose:
I installed nvidia toolkit container using this https://docs.nvidia.com/datacenter/cloud...guide.html and I'm able to run nvidia-smi with no issues. After running the compose I am alsi able to run docker exec jellyfin nvidia-smi and get back a response with no issues inside of the container:
When trying to play a episode from a show I keep getting a transcoding error with the message:
I'm using Ubuntu Server Ubuntu 24.04.1 LTS with Docker. I have an old GTX 980TI in my home server. Any ideas? Can't figure out what I am missing
I also tried using intel quick sync since I have an i7-7700k in this home server but I had no luck there either. The whole reason I went down this rabbit hole is when using jellyfin from firefox and watching certain shows, my CPU usage would spike to 100% from ffmpeg in jellyfin doing the transcoding
Code:
jellyfin:
image: lscr.io/linuxserver/${MEDIA_SERVICE}
container_name: ${MEDIA_SERVICE}
environment:
- PUID=${PUID}
- PGID=${PGID}
- VERSION=docker
- NVIDIA_VISIBLE_DEVICES=all
- NVIDIA_DRIVER_CAPABILITIES=all
volumes:
- ${MEDIA_DIRECTORY}/movies:/data/movies
- ${MEDIA_DIRECTORY}/tvshows:/data/tvshows
- ${INSTALL_DIRECTORY}/config/${MEDIA_SERVICE}:/config
runtime: nvidia
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: ["gpu", "utility"]
ports:
- 8096:8096
restart: unless-stopped
I installed nvidia toolkit container using this https://docs.nvidia.com/datacenter/cloud...guide.html and I'm able to run nvidia-smi with no issues. After running the compose I am alsi able to run docker exec jellyfin nvidia-smi and get back a response with no issues inside of the container:
Code:
Thu Sep 19 03:30:06 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.107.02 Driver Version: 550.107.02 CUDA Version: N/A |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce GTX 980 Ti Off | 00000000:01:00.0 Off | N/A |
| 0% 56C P8 35W / 275W | 2MiB / 6144MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| No running processes found |
+-----------------------------------------------------------------------------------------+
When trying to play a episode from a show I keep getting a transcoding error with the message:
Code:
/usr/lib/jellyfin-ffmpeg/ffmpeg -analyzeduration 200M -probesize 1G -init_hw_device cuda=cu:0 -filter_hw_device cu -noautorotate -i file:"/data/tvshows/Breaking Bad/Season 3/Breaking Bad - S03E01 - No Más Bluray-1080p.mkv" -map_metadata -1 -map_chapters -1 -threads 0 -map 0:0 -map 0:1 -map -0:0 -codec:v:0 h264_nvenc -preset p1 -b:v 19051125 -maxrate 19051125 -bufsize 38102250 -profile:v:0 high -g:v:0 72 -keyint_min:v:0 72 -filter_complex "[0:3]scale=-1:1080:fast_bilinear,scale,crop,pad=max(1920\,iw):max(1080\,ih):(ow-iw)/2:(oh-ih)/2:black@0,crop=1920:1080[sub];[0:0]setparams=color_primaries=bt709:color_trc=bt709:colorspace=bt709,scale=trunc(min(max(iw\,ih*a)\,min(1920\,1080*a))/2)*2:trunc(min(max(iw/a\,ih)\,min(1920/a\,1080))/2)*2,format=yuv420p[main];[main][sub]overlay=eof_action=pass:repeatlast=0" -start_at_zero -codec:a:0 libfdk_aac -ac 2 -ab 256000 -af "volume=2" -copyts -avoid_negative_ts disabled -max_muxing_queue_size 2048 -f hls -max_delay 5000000 -hls_time 3 -hls_segment_type fmp4 -hls_fmp4_init_filename "e26a6306ba622f193ae59116a0688317-1.mp4" -start_number 0 -hls_segment_filename "/config/cache/transcodes/e26a6306ba622f193ae59116a0688317%d.mp4" -hls_playlist_type vod -hls_list_size 0 -y "/config/cache/transcodes/e26a6306ba622f193ae59116a0688317.m3u8"
ffmpeg version 6.0.1-Jellyfin Copyright (c) 2000-2023 the FFmpeg developers
built with gcc 13 (Ubuntu 13.2.0-23ubuntu4)
configuration: --prefix=/usr/lib/jellyfin-ffmpeg --target-os=linux --extra-version=Jellyfin --disable-doc --disable-ffplay --disable-ptx-compression --disable-static --disable-libxcb --disable-sdl2 --disable-xlib --enable-lto --enable-gpl --enable-version3 --enable-shared --enable-gmp --enable-gnutls --enable-chromaprint --enable-opencl --enable-libdrm --enable-libxml2 --enable-libass --enable-libfreetype --enable-libfribidi --enable-libfontconfig --enable-libbluray --enable-libmp3lame --enable-libopus --enable-libtheora --enable-libvorbis --enable-libopenmpt --enable-libdav1d --enable-libsvtav1 --enable-libwebp --enable-libvpx --enable-libx264 --enable-libx265 --enable-libzvbi --enable-libzimg --enable-libfdk-aac --arch=amd64 --enable-libshaderc --enable-libplacebo --enable-vulkan --enable-vaapi --enable-amf --enable-libvpl --enable-ffnvcodec --enable-cuda --enable-cuda-llvm --enable-cuvid --enable-nvdec --enable-nvenc
libavutil 58. 2.100 / 58. 2.100
libavcodec 60. 3.100 / 60. 3.100
libavformat 60. 3.100 / 60. 3.100
libavdevice 60. 1.100 / 60. 1.100
libavfilter 9. 3.100 / 9. 3.100
libswscale 7. 1.100 / 7. 1.100
libswresample 4. 10.100 / 4. 10.100
libpostproc 57. 1.100 / 57. 1.100
[AVHWDeviceContext @ 0x5c7eb42e0300] Cannot load libcuda.so.1
[AVHWDeviceContext @ 0x5c7eb42e0300] Could not dynamically load CUDA
Device creation failed: -1.
Failed to set value 'cuda=cu:0' for option 'init_hw_device': Operation not permitted
Error parsing global options: Operation not permitted
I'm using Ubuntu Server Ubuntu 24.04.1 LTS with Docker. I have an old GTX 980TI in my home server. Any ideas? Can't figure out what I am missing
I also tried using intel quick sync since I have an i7-7700k in this home server but I had no luck there either. The whole reason I went down this rabbit hole is when using jellyfin from firefox and watching certain shows, my CPU usage would spike to 100% from ffmpeg in jellyfin doing the transcoding